WNFS “v2”
Munch & Learn

(WNFS = Web Native File System)

Public WNFS

[My Files

Public WNFS

e Based on UnixFS
e Merkle tree
e Directories include hashes
of children

Public WNFS

e Based on UnixFS
e Merkle tree
e Directories include hashes
of children
e CIDs = inherent immutability
e “Changes”

Public WNFS

e Based on UnixFS
e Merkle tree
e Directories include hashes
of children
e CIDs = inherent immutability
e “Changes”
e — new blocks
e — new root

Public WNFS

e WNFS-specific:

e Backlinks (“previous”)
e Versioning!
 Preserves all information
e — Allows WNFS merges

Public WNFS

e WNFS-specific:
e Backlinks (“previous”)
e Versioning!
 Preserves all information
e — Allows WNFS merges
e That’s almost everything!

e The rest:

e Arbitrary metadata

e Merge nodes have multiple
“previous” links
e Symlinks

Private WNFS

Private WNFS

e Based on cryptrees

e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

Private WNFS

e Based on cryptrees
e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

Private WNFS

e Based on cryptrees

e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

Private WNFS

e Based on cryptrees
e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

Private WNFS

e Based on cryptrees
e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

Private WNFS

e Based on cryptrees
e Encrypt all directories/files

with symmetric encryption
* Include keys to decrypt

children

e — A key gives access to its

node & all children

Private WNFS

e Links between nodes encrypted

Private WNFS

e Links between nodes encrypted

Private WNFS

e Links between nodes encrypted
+ Not leaking metadata
- Can’t walk tree (e.g. for

pinning)

Private WNFS

e Links between nodes encrypted
+ Not leaking metadata
- Can’t walk tree (e.g. for
pinning)

e — Collect nodes in HAMT

Private WNFS
‘ (not to scale)

e Links between nodes encrypted o \
+ Not leaking metadata

- Can’t walk tree (e.g. for
pinning)
e — Collect nodes in HAMT

WNFS HAMT

e Essentially a huge hash map

e Efficient encoding in
Immutable contexts by being a
balanced tree

WNFS HAMT

e Essentially a huge hash map

e Efficient encoding in
Immutable contexts by being a
balanced tree

e This is what a third party sees

WNFS HAMT

e Essentially a huge hash map

e Efficient encoding in
Immutable contexts by being a
balanced tree

e This is what a third party sees

—> Hides directory structure

Private WNFS: Write Access

e Goals
e Write access to a directory gives write access to subdirectories

Private WNFS: Write Access

e Goals
e Write access to a directory gives write access to subdirectories
e Verifying write access doesn’t require read access

Private WNFS:
Write Access o

Private WNFS:

Write Access o
/2 N

inumber 165 ’
e Associate an “inumber” with o

each private node \

/2R
inumber 925 ‘ ‘ ,
N Y o\h lnumber 656

/2
"' .'inumber 812

inumber 764

inumber 448

Private WNFS:
Write Access

e Associate an “inumber” with
each private node

e inumbers identify what subset
of nodes you have access to

inumber 165

O

@

2R\
inumber 925 ‘
\ P/

inumber 448

o

A\
Y,

\

‘ inumber 656

|

@

7,
. inumber 812

inumber 764

Private WNFS:
Write Access

How does a third party know
whether a value is a subdirectory
of an inumber?

child of 6562 child of 6567

277

-4~ Cryptographic
& Accumulators

<

Short Intro: Cryptographic Accumulators

e “Like a set of values”

e Given only the accumulator, can’t derive what’s inside

e Given a X, anyone can compute whether x is in the accumulator
e In WNFS: Symmetric (Nyberg) accumulators

Namefilters

e Private wnfs nodes are referred
to by their “namefilter” inumber 165

/2
inumber 925 ‘
\ P/

inumber 448

/2
. inumber 812

inumber 764

Namefilters

e Private wnfs nodes are referred
to by their “namefilter” inumber 165

e Their namefilteris a

cryptographic accumulator of:

e The “inumber”s a block’s : 7N\
. 1number 925 ’
spine N\ —

inumber 448

/2
. inumber 812

inumber 764

Namefilters

e Private wnfs nodes are referred
to by their “namefilter” inumber 165

e Their namefilteris a

cryptographic accumulator of:

e The “inumber”s a block’s 7‘“
spine N\

e The block’s revision

inumber 448

namefilter = accumulate(165,656,448,<revision>)

Namefilters

e Private wnfs nodes are referred
to by their “namefilter” inumber 165

e Their namefilteris a

cryptographic accumulator of:

e The “inumber”s a block’s 7“
spine N— l ‘J 1number 656

e The block’s revision o\lf/‘ \\\

R\ /4
inumber 448 ‘ "' .,
\ i

accumulate(165,656,448,<revision>)
accumulate(165,656,<revision>)

namefilter

Namefilters

e Private wnfs nodes are referred
to by their “namefilter” inumber 165

e Their namefilteris a

cryptographic accumulator of:

e The “inumber”s a block’s

. 1number 925
spine

@‘,J inumber 656
Ofn

e The block’s revision \l/ \\\

R\ /4
inumber 448 ' "' .'
\ i

namefilter = accumulate(165,656,448,<revision>)
= accumulate(165,656,<revision>)
namefilter = accumulate(165,925,<revision>)

WNFS HAMT

A private block’s key is its
namefilter

e Given an inumber, a third party
can compute the set of nodes
that are children

namefilter

namefilter

2

N

4
\N

H0

AR Y

accumulate(165,656,448,<revision>)
accumulate(165,656,<revision>)
accumulate(165,925,<revision>)

Private WNFS:
Versioning

Private WNFS:
Versioning

Private WNFS:
Versioning

Private WNFS:
Versioning

e Copy-on-write to preserve

history

Private WNFS:
Versioning

e Copy-on-write to preserve

history

 Fix links along the path from

the root

Private WNFS:
Versioning

e Copy-on-write to preserve
history

 Fix links along the path from

the root

e Problem: Clients might only
have access to a subtree

Private WNFS:
Versioning

e Private nodes include their

namefilter without a revision

e Allows seeking new versions

e Seeking necessary while

walking unfamiliar private

trees

Private WNFS:
Versioning

e Private nodes include their

namefilter without a revision

e Allows seeking new versions

e Seeking necessary while

walking unfamiliar private
trees

e Someone with write access can

repair the links later

Private WNFS:
Backward Secrecy

Goal: Granting read access to a directory
shouldn’t also grant you read access to all
previous versions.

Backward
Secrecy o

Backward
Secrecy o

e The next revision of a block is

encrypted with essentially a
hash of the current revision’s

key

Backward
Secrecy

e The next revision of a block is
encrypted with essentially a

hash of the current revision’s

key

e This key doubles as the ‘
revision identifier 4

2

4
\N

5

N J\ J) 7

namefilter = accumulate(165,656,448,<revision>)
= accumulate(165,656,<revision>)
namefilter = accumulate(165,925,<revision>)

Backward
Secrecy

e The next revision of a block is
encrypted with essentially a

hash of the current revision’s

key

e This key doubles as the ‘
revision identifier 4

2

4
\N

5

N I\ J) 7

namefilter = accumulate(165,656,448,<sym key>)
= accumulate(165,656,<sym key>)
namefilter = accumulate(165,925,<sym key>)

Problems with Huge Seeks?
Solution: Skip Ratchet

Not in this talk, sorry!

Read the paper” &

* https://github.com/fission-suite/skip-ratchet-paper

https://github.com/fission-suite/skip-ratchet-paper

WNFS Implementation
Considerations

Consider Light Clients:

Working with partially
replicated WNFS In browsers

Light Clients:
Partial Storage

Light Clients:
Partial Storage

e Only store what you touch

e Only touch things once your
user’s actions request that

e “lazy”

e Especially important with

versioning!

Light Clients:
Partial Storage

type Entry
= F1ile
| Directory
e Only store what you touch |
e Only touch things once your
user’s actions request that interface Directory {
metadata: ...
® “Iaz b})
Y . , . children: {
e Especially important with [name: string]: CID
versioning! ;
* Only decode single layers at a previous?: CID
time }
* Local block cache takes care of decodeEntry(cid: CID): Promise<Entry>

the rest encodeEntry(entry: Entry): Promise<CID>

Consider Compressing Changes

Syncing WNFS over Bitswap takes at least
1 round-trip “per IPLD tree depth”
—> 1 round trip more per revision

Compress Changes

Compress Changes

* Problem:
e Changes cause new

revisions /‘\
@ A
™\
.y

(L

L\

O OO0

Compress Changes

* Problem:
e Changes cause new
revisions
e Developers don’t necessarily
want a revision for every
change

Compress Changes

* Problem:
e Changes cause new
revisions
e Developers don’t necessarily

want a revision for every
change

e Each revision adds

2 * latency to sync-over-
bitswap

Compress Changes

* Problem:
e Changes cause new
revisions
e Developers don’t necessarily

want a revision for every
change

e Each revision adds

2 * latency to sync-over-
bitswap

e Also: Hash-linking means
we need to serialize each in-

between version

Compress Changes

e Solution:
e Update the previous pointer
lazily

Compress Changes

e Solution:
e Update the previous pointer
lazily

Compress Changes

e Solution:
e Update the previous pointer
lazily
e Copy deserialized nodes

Compress Changes

e Solution:
e Update the previous pointer
lazily
e Copy deserialized nodes
 Finalize by updating the \)
previous pointer

Compress Changes

e Solution:

e Update the previous pointer .
lazily /

e Copy deserialized nodes
 Finalize by updating the ‘
previous pointer
* In-between nodes can be GC’d
by the host language

Compress Changes

e Solution:
e Update the previous pointer
lazily
e Copy deserialized nodes
 Finalize by updating the
previous pointer
* In-between nodes can be GC’d
by the host language

type VirtualEntry

= VirtualFile
| VirtualDirectory

interface VirtualDirectory 1{

}

metadata: ...
children: {
[name: stringl: CID | VirtualEntry

}

previous?: CID

Compress Changes

e Solution:
e Update the previous pointer
lazily
e Copy deserialized nodes
 Finalize by updating the
previous pointer
* In-between nodes can be GC’d
by the host language

metadata: ...
children: {
“stuff.zip”: {
metadata: ...
content: CID(bafy...)

}
“Docs”: CID(bafy ...)

}
previous: CID(bafy...)

Consider Nonlocal Concurrency

Other devices make progress while being offline.
Local-First!

Bob

Alice

Alice

Alice

Alice

WNFS Merge

e Two (or more) roots
e Detect divergence
e Look if one node is included
in the other’s DAG

WNFS Merge

e Two (or more) roots
e Detect divergence
e Look if one node is included
in the other’s DAG
e Start merging
e Create merge node (two
previous links)

WNFS Merge

e Two (or more) roots
e Detect divergence

e Look if one node is included

In the other’s DAG
e Start merging

e Create merge node (two

previous links)
e Recursive descent

™

@_&

S.ZIp Doc §.2ip

C\‘ e

V

00O

B

@/ \
()

)

©

WNFS Merge

e Two (or more) roots
e Detect divergence
e Look if one node is included
In the other’s DAG
e Start merging
e Create merge node (two
previous links)
e Recursive descent

e Short-circuit if a fast-

forward is possible

WNFS Merge

e Two (or more) roots
e Detect divergence
e Look if one node is included
in the other’s DAG
e Start merging
e Create merge node (two
previous links)
e Recursive descent

e Short-circuit if a fast-
forward is possible

WNFS Merge

e Two (or more) roots
e Detect divergence
e Look if one node is included
in the other’s DAG
e Start merging
e Create merge node (two
previous links)
e Recursive descent

e Short-circuit if a fast-
forward is possible

WNFS Merge

e Works similarily on the private
side
e Not perfect
e Moving & modifying
concurrently result in two
copies
e Conflicts on files need to be
handled “by coin flip”
(lower hash wins)
e (I’'m leaving out some details)

WNFS Merge

Immutable internal data
structures make working with
multiple trees at the same time

easier

Consider Local Concurrency

You’re in a browser and a button
causes WNFS changes.
Congratulations, you need to care about
local concurrency!

Local Concurrency

e WNFS operations are async

e That’s a good thing! Not blocking Ul thread

e Non-async is impossible: WebCrypto API is async
 You could solve this using WNFS merge

e But exploiting local context can give better results!

Local Concurrency

e Transactional API const fs = //
e Each transaction builds its awalt fs.transaction(async tx = {

owh WNFS tree (isolation) // ’Fhis wiu be re—rgn if cor.lflicts are detected
await tx.write(“public/a/b/file.txt”, “Hello, World!")

const num = parseInt(await tx.read(“private/number.txt”))
await tx.write(“private/number.txt”, (num * 2).toFixed(2))

})

Local Concurrency

e Transactional API
e Each transaction builds its
own WNFS tree (isolation)
e Software Transactional Memory
e Keep track of what nodes
were read/written
e Re-run transactions if reads
are invalidated
e Conflict-free transactions
can be stichted together

const fs = //

awalt fs.transaction(async tx = {
// this will be re-run if conflicts are detected

await tx.write(“public/a/b/file.txt”, “Hello, World!")
const num = parseInt(await tx.read(“private/number.txt”))
await tx.write(“private/number.txt”, (num * 2).toFixed(2))

})

 read “public/a/b/file.txt”
* read “private/number.txt”
 wrote “private/number.txt”

Local Concurrency

e Transactional API
e Each transaction builds its
own WNFS tree (isolation)
e Software Transactional Memory
e Keep track of what nodes

were read/written
e Re-run transactions if reads

are invalidated
e Conflict-free transactions
can be stichted together
e Exploit things you can do

locally

const fs = // ...

awalt fs.transaction(async tx = {
// this will be re-run if conflicts are detected

await tx.write(“public/a/b/file.txt”, “Hello, World!")
const num = parseInt(await tx.read(“private/number.txt”))
await tx.write(“private/number.txt”, (num * 2).toFixed(2))

})

 read “public/a/b/file.txt”
* read “private/number.txt”
 wrote “private/number.txt”

BlockStore & PrivateStore
Abstractions

BlockStore

e Abstracts side effects

type CodecID = { code: number; name: string }

interface BlockStore {
getBlock(cid: CID):
Promise<Uint8Array | null>

putBlock(bytes: Uint8Array, codec: CodecID):
Promise<CID>

BlockStore

e Abstracts side effects

e One property: ,
type CodecID = { code: number; name: string }
e You can get what you’ve put
interface BlockStore {
getBlock(cid: CID):

Promise<Uint8Array | null>

putBlock(bytes: Uint8Array, codec: CodecID):
Promise<CID>

BlockStore

e Abstracts side effects

e One property: ,
type CodecID = { code: number; name: string }
e You can get what you’ve put

e Doesn’t handle chunking (!) interface BlockStore {

: getBlock(cid: CID):
* Implementations could be Promise<Uint8Array \ null>

e Retrieving from memory

putBlock(bytes: Uint8Array, codec: CodecID):

e Retrieving from IndexedDB Promise<CID>

e Retrieving from Bitswap }

BlockStore

e Abstracts side effects

e One property: ,
type CodecID = { code: number; name: string }
e You can get what you’ve put

e Doesn’t handle chunking (!) interface BlockStore {
getBlock(cid: CID):

* Implementations could be Promise<Uint8Array | null>

e Retrieving from memory
putBlock(bytes: Uint8Array, codec: CodecID):

e Retrieving from IndexedDB Promise<CID>

e Retrieving from Bitswap }
e (Similar abstractions exist in
in js-ipfs & go-ipfs)

BlockStore

e Abstracts side effects

e One property: ,
type CodecID = { code: number; name: string }
e You can get what you’ve put

e Doesn’t handle chunking (!) interface BlockStore {
getBlock(cid: CID):

* Implementations could be Promise<Uint8Array | null>

e Retrieving from memory
putBlock(bytes: Uint8Array, codec: CodecID):

e Retrieving from IndexedDB Promise<CID>

e Retrieving from Bitswap }
e (Similar abstractions exist in
in js-ipfs & go-ipfs)
e BlockStores compose!

type CodecID = { code: number; name: string }

BIOCkStOI'e interface BlockStore {

getBlock(cid: CID):
Promise<Uint8Array | null>

e BlockStores compose! putBlock(bytes: Uint8Array, codec: CodecID):
Promise<CID>
}

function inMemoryBlockStore(base: BlockStore) {
const map = {}
return {
async getBlock(cid) {

return map[cid] || await base.getBlock(cid)
b o
async putBlock(bytes, codec) {
const cid = new CID(hash(bytes), codec)
maplcid] = bytes
return cid
b ¢
async commitToBase() {
for (const [cid, bytes] of Object.entries(map)) {
awalit base.putBlock(bytes, cid.codec)
}

}
}
}

type CodecID = { code: number; name: string }

BIOCkStOre interface BlockStore {

getBlock(cid: CID):
Promise<Uint8Array | null>

e BlockStores compose! putBlock(bytes: Uint8Array, codec: CodecID):

Promise<CID>

e Reads propagate }

. e .
* Writes don’t Immedlatly function inMemoryBlockStore(base: BlockStore) {
const map = {}
propagate ceturn {
async getBlock(cid) {
return map[cid] || await base.getBlock(cid)

b o

async putBlock(bytes, codec) {
const cid = new CID(hash(bytes), codec)
maplcid] = bytes
return cid

by

async commitToBase() {
for (const [cid, bytes] of Object.entries(map)) {

await base.putBlock(bytes, cid.codec)

}
}
}
}

BlockStore

e BlockStores compose!
e Reads propagate
e Writes don’t immediatly
propagate

//

const 1pfsBlockStore

// Manage your side-effects

const tempBlockStore =
inMemoryBlockStore(ipfsBlockStore)

const newRootCID = await wnfs.write(
currentRootCID,
tempBlockStore

)

// now commit your block store
tempBlockStore.commitToBase()
// or just throw it away

BlockStore

e BlockStores compose!

» Reads propagate ,
, , , type CodecID = { code: number; name: string }
e Writes don’t immediatly

propagate interface BlockStore {
getBlock(cid: CID):

* Applications include: Promise<Uint8Array | null>

e Tiered caches

e Logging

e |solation 1
e Testing

e WNFS in WASM

putBlock(bytes: Uint8Array, codec: CodecID):
Promise<CID>

PrivateStore

e Like a BlockStore, but for

encrypted data interface PrivateRef {

key: SymmetricKey

e Not indexed by CID, but by name: PrivateName
namefilters $

* Can be composed like interface PrivateStore {
BlockStores getBlock(ref: PrivateRef):

Promise<Uint8Array | null>

putBlock(ref: PrivateRef, plaintext: Uint8Array):
Promise<void>

PrivateStore

e Like a BlockStore, but for

encrypted data interface PrivateRef {

) key: SymmetricKey
* Not indexed by CID, but by name: PrivateName

namefilters }

e Can be composed like interface PrivateStore {

BlockStores getBlock(ref: PrivateRef):

. : Promise<Uint8Arra null>
e PrivateNames can be someting V|

abstract putBlock(ref: PrivateRef, plaintext: Uint8Array):
 Avoid cryptographic Promise<volid>

accumulator construction

PrivateStore

e Like a BlockStore, but for

encrypted data interface PrivateRef {

) key: SymmetricKey
* Not indexed by CID, but by name: PrivateName

namefilters }

e Can be composed like interface PrivateStore {

BlockStores getBlock(ref: PrivateRef):

. : Promise<Uint8Arra null>
e PrivateNames can be someting V|

abstract putBlock(ref: PrivateRef, plaintext: Uint8Array):
e Avoid cryptographic Promise<void>
accumulator construction

e Can locally skip encryption

WNFS 1n WASM

WNFS 1n WASM

e WASM is observationally pure

WNFS 1n WASM

e WASM is observationally pure
e |dea: Implement algorithms & WNFS DAG surgery in WASM
e Dependency-inject Network & Storage using the BlockStore

WNFS 1n WASM

e WASM is observationally pure

e |dea: Implement algorithms & WNFS DAG surgery in WASM

e Dependency-inject Network & Storage using the BlockStore

e Problem: (only applies to Browsers)
e BlockStore methods are async
e WASM function imports don’t support async functions natively
e Lots of complexity for “conceptually synchronous” operations

WNFS 1n WASM

e WASM is observationally pure
e |dea: Implement algorithms & WNFS DAG surgery in WASM
e Dependency-inject Network & Storage using the BlockStore
e Problem: (only applies to Browsers)
e BlockStore methods are async
e WASM function imports don’t support async functions natively
e Lots of complexity for “conceptually synchronous” operations
e Solution
e Put WASM into WebWorker
e Write a small JS shell around WASM

e Turn asynchronous BlockStore calls from Ul Worker into synchronous calls

SharedArrayBuffers and Atomics.wait

using

https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js

Conclusion

Conclusion

e Separate functional core from mutable shell

Conclusion

e Separate functional core from mutable shell
e Lots of complicated, pure functions that ingest DAG(s) and produce a DAG:
e DAG surgery: write, mkdir, WNFS merge
e Namefilters, encryption, skip ratchet

Conclusion

e Separate functional core from mutable shell

e Lots of complicated, pure functions that ingest DAG(s) and produce a DAG:
e DAG surgery: write, mkdir, WNFS merge
e Namefilters, encryption, skip ratchet

e Mutable shell handles:
e BlockStore implementations: Networking, Storage
e Key management
e Root WNFS pointer

Conclusion

e Separate functional core from mutable shell
e Lots of complicated, pure functions that ingest DAG(s) and produce a DAG:
e DAG surgery: write, mkdir, WNFS merge
e Namefilters, encryption, skip ratchet
e Mutable shell handles:
e BlockStore implementations: Networking, Storage
e Key management
e Root WNFS pointer
e WASM lends itself well for the functional core
| hope you learned something about WNFS today!

Links

e https://whitepaper.fission.codes/file-system/file-system-basics

e WNFS v2 prototype branch: https://github.com/fission-suite/webnative/tree/

matheus23/wnfs2

» wnfs-go WNFS v2 implementation: https://github.com/qri-io/wnfs-go

(will all eventually move to a wnfs-wg github org)
e WASM worker experimentation: https://github.com/matheus23/gca-rust/
blob/8de902d052e8168b1809f108a63¢c94f539083ba7/js/worker.js

https://whitepaper.fission.codes/file-system/file-system-basics
https://github.com/fission-suite/webnative/tree/matheus23/wnfs2
https://github.com/fission-suite/webnative/tree/matheus23/wnfs2
https://github.com/qri-io/wnfs-go
https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js
https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js

