
WNFS “v2”

Munch & Learn

(WNFS = Web Native File System)

Public WNFS

cat.jpg

stuff.zip Docs

My Files

Public WNFS

� Based on UnixF�

� Merkle tre�

� Directories include hashes

of children

Public WNFS

� Based on UnixF�
� Merkle tre�

� Directories include hashes
of children

� CIDs -> inherent immutabilit�
� “Changes”

Public WNFS

� Based on UnixF�
� Merkle tre�

� Directories include hashes
of children

� CIDs -> inherent immutabilit�
� “Changes”

� -> new block�
� -> new root

Public WNFS

� WNFS-specific�
� Backlinks (“previous”�

� Versioning�
� Preserves all informatio�
� -> Allows WNFS merges

Public WNFS

� WNFS-specific�
�

�
�

Backlinks (“previous”�
� Versioning�
� Preserves all informatio�
� -> Allows WNFS merge�

That’s almost everything�
The rest�

� Arbitrary metadat�
� Merge nodes have multiple

“previous” link�
� Symlinks

Private WNFS

Private WNFS

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children

Private WNFS

� Based on cryptree�
� Encrypt all directories/files

with symmetric encryptio�
� Include keys to decrypt

children
� -> A key gives access to its

node & all children

Private WNFS

� Links between nodes encrypted

Private WNFS

� Links between nodes encrypted

Private WNFS

� Links between nodes encrypted
+ Not leaking metadata

 Can’t walk tree (e.g. for
pinning)
-

Private WNFS

� Links between nodes encrypted
+ Not leaking metadata

 Can’t walk tree (e.g. for
pinning)
-

� -> Collect nodes in HAMT

Private WNFS
(not to scale)

� Links between nodes encrypted
+ Not leaking metadata

 Can’t walk tree (e.g. for
pinning)
-

� -> Collect nodes in HAMT

WNFS HAMT

� Essentially a huge hash ma�
� Efficient encoding in

immutable contexts by being a
balanced tree

WNFS HAMT

� Essentially a huge hash ma�
� Efficient encoding in

immutable contexts by being a
balanced tre�

� This is what a third party sees

WNFS HAMT

� Essentially a huge hash ma�
� Efficient encoding in

immutable contexts by being a
balanced tre�

� This is what a third party sees

-> Hides directory structure

Private WNFS: Write Access

� Goal�
� Write access to a directory gives write access to subdirectories

Private WNFS: Write Access

� Goal�
� Write access to a directory gives write access to subdirectorie�
� Verifying write access doesn’t require read access

Private WNFS: 

Write Access

Private WNFS: 
Write Access

inumber 165

inumber 656

inumber 812inumber 448

inumber 764

inumber 925

� Associate an “inumber” with
each private node

Private WNFS: 
Write Access

inumber 165

inumber 656

inumber 812inumber 448

inumber 764

inumber 925

� Associate an “inumber” with
each private nod�

� inumbers identify what subset
of nodes you have access to

Private WNFS: 
Write Access

How does a third party know
whether a value is a subdirectory
of an inumber?

child of 656?

???

child of 656?

Cryptographic

Accumulators

Short Intro: Cryptographic Accumulators

� “Like a set of values�
� Given only the accumulator, can’t derive what’s insid�
� Given a x, anyone can compute whether x is in the accumulato�
� In WNFS: Symmetric (Nyberg) accumulators

Namefilters

inumber 165

inumber 656

inumber 812inumber 448

inumber 764

inumber 925

� Private wnfs nodes are referred
to by their “namefilter”

Namefilters

inumber 165

inumber 656

inumber 812inumber 448

inumber 764

inumber 925

� Private wnfs nodes are referred
to by their “namefilter�

� Their namefilter is a
cryptographic accumulator of�

� The “inumber”s a block’s
spine

Namefilters
� Private wnfs nodes are referred
to by their “namefilter�

� Their namefilter is a
cryptographic accumulator of�
� The “inumber”s a block’s
spin�

� The block’s revision

inumber 165

inumber 656

inumber 448

namefilter = accumulate(, , ,<revision>)165 656 448

Namefilters
� Private wnfs nodes are referred
to by their “namefilter�

� Their namefilter is a
cryptographic accumulator of�
� The “inumber”s a block’s
spin�

� The block’s revision

inumber 165

inumber 656

inumber 448

namefilter = accumulate(, , ,<revision>)165 656 448
namefilter = accumulate(, ,<revision>)165 656

Namefilters
� Private wnfs nodes are referred
to by their “namefilter�

� Their namefilter is a
cryptographic accumulator of�
� The “inumber”s a block’s
spin�

� The block’s revision

inumber 165

inumber 656

inumber 448

namefilter = accumulate(, , ,<revision>)165 656 448
namefilter = accumulate(, ,<revision>)165 656
namefilter = accumulate(,925,<revision>)165

inumber 925

namefilter = accumulate(, , ,<revision>)165 656 448
namefilter = accumulate(, ,<revision>)165 656
namefilter = accumulate(,925,<revision>)165

WNFS HAMT
� A private block’s key is its

namefilte�
� Given an inumber, a third party

can compute the set of nodes
that are children

Private WNFS: 
Versioning

Private WNFS: 
Versioning

Private WNFS: 
Versioning

Private WNFS: 
Versioning

� Copy-on-write to preserve
history

Private WNFS: 
Versioning

� Copy-on-write to preserve
histor�

� Fix links along the path from
the root

Private WNFS: 
Versioning

� Copy-on-write to preserve
histor�

� Fix links along the path from
the roo�

� Problem: Clients might only
have access to a subtree

Private WNFS: 
Versioning

� Private nodes include their
namefilter without a revisio�

� Allows seeking new version�
� Seeking necessary while

walking unfamiliar private
trees

Private WNFS: 
Versioning

� Private nodes include their
namefilter without a revisio�

� Allows seeking new version�
� Seeking necessary while

walking unfamiliar private
tree�

� Someone with write access can
repair the links later

Private WNFS:

Backward Secrecy

Goal: Granting read access to a directory

shouldn’t also grant you read access to all

previous versions.

Backward

Secrecy

Backward

Secrecy

Hash()� The next revision of a block is
encrypted with essentially a
hash of the current revision’s
key

namefilter = accumulate(, , ,<revision>)165 656 448
namefilter = accumulate(, ,<revision>)165 656
namefilter = accumulate(,925,<revision>)165

Backward

Secrecy

� The next revision of a block is
encrypted with essentially a
hash of the current revision’s
ke�

� This key doubles as the
revision identifier

namefilter = accumulate(, , ,<sym key>)165 656 448
namefilter = accumulate(, ,<sym key>)165 656
namefilter = accumulate(,925,<sym key>)165

Backward

Secrecy

� The next revision of a block is
encrypted with essentially a
hash of the current revision’s
ke�

� This key doubles as the
revision identifier

Problems with Huge Seeks?

Solution: Skip Ratchet

Not in this talk, sorry!

Read the paper*

* https://github.com/fission-suite/skip-ratchet-paper

https://github.com/fission-suite/skip-ratchet-paper

WNFS Implementation 
Considerations

Consider Light Clients:
Working with partially

replicated WNFS in browsers

Light Clients:

Partial Storage

Light Clients: 
Partial Storage

� Only store what you touc�
� Only touch things once your

user’s actions request tha�
� “lazy�
� Especially important with

versioning!

Light Clients: 
Partial Storage type

interface

 =
 |
 | ...

 {

 metadata: ...

 children: {

 [name:]:
 }

 previous?:
}

decodeEntry(cid:): < >

encodeEntry(entry:): < >

Entry

File

Directory

Directory

string CID

CID

CID Promise Entry
Entry Promise CID

� Only store what you touc�
� Only touch things once your

user’s actions request tha�
� “lazy�
� Especially important with

versioning�
� Only decode single layers at a

tim�
� Local block cache takes care of

the rest

Consider Compressing Changes
Syncing WNFS over Bitswap takes at least

1 round-trip “per IPLD tree depth”

-> 1 round trip more per revision

Compress Changes

Compress Changes

� Problem�
� Changes cause new

revisions

Compress Changes

� Problem�
� Changes cause new

revision�
� Developers don’t necessarily

want a revision for every
change

Compress Changes

� Problem�
� Changes cause new

revision�
� Developers don’t necessarily

want a revision for every
chang�

� Each revision adds 
2 * latency to sync-over-
bitswap

Compress Changes

� Problem�
� Changes cause new

revision�
� Developers don’t necessarily

want a revision for every
chang�

� Each revision adds 
2 * latency to sync-over-
bitswa�

� Also: Hash-linking means
we need to serialize each in-
between version

Compress Changes

� Solution�
� Update the previous pointer

lazily

Compress Changes

� Solution�
� Update the previous pointer

lazily

Compress Changes

� Solution�
� Update the previous pointer

lazil�
� Copy deserialized nodes

Compress Changes

� Solution�
� Update the previous pointer

lazil�
� Copy deserialized node�
� Finalize by updating the

previous pointer

Compress Changes

� Solution�
� Update the previous pointer

lazil�
� Copy deserialized node�
� Finalize by updating the

previous pointe�
� In-between nodes can be GC’d

by the host language

Compress Changes
type

interface

 =
 |
 | ...

 {

 metadata: ...

 children: {

 [name:]: |
 }

 previous?:
}

VirtualEntry

VirtualFile

VirtualDirectory

VirtualDirectory

string CID VirtualEntry

CID

� Solution�
� Update the previous pointer

lazil�
� Copy deserialized node�
� Finalize by updating the

previous pointe�
� In-between nodes can be GC’d

by the host language

Compress Changes

{

 : ...

 : {

 : {

 : ...

 : (bafy...)

 }

 : (bafy...)

 }

 : (bafy...)

}

metadata
children

“stuff.zip”
metadata
content

“Docs”

previous

CID

CID

CID

� Solution�
� Update the previous pointer

lazil�
� Copy deserialized node�
� Finalize by updating the

previous pointe�
� In-between nodes can be GC’d

by the host language

Consider Nonlocal Concurrency
Other devices make progress while being offline.

Local-First!

s.zip Docs

A B C

s.zip Docs

A B C

s.zip Docs

A B C

Alice Bob

s.zip Docs

A B C

Docs

C

Alice Bob

s.zip Docs

A B C

Alice Bob

s.zip Docs

A B C

s.zip

A
B

Docs

C

Alice Bob

s.zip

A
B

Docs

C

Docs

A B C

s.zip

Alice Bob

s.zip

A
B

Docs

C

Docs

A B C

s.zip

s.zip

A B

Docs

C

Docss.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DAG

s.zip

A B

Docs

C

Docss.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DA�

� Start mergin�
� Create merge node (two

previous links)

s.zip

A B

Docs

C

Docss.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DA�

� Start mergin�
� Create merge node (two

previous links�
� Recursive descent

s.zip

A B

Docs

C

s.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DA�

� Start mergin�
� Create merge node (two

previous links�
� Recursive descen�
� Short-circuit if a fast-

forward is possible

s.zip

A B

Docs

C

s.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DA�

� Start mergin�
� Create merge node (two

previous links�
� Recursive descen�
� Short-circuit if a fast-

forward is possible

A B

Docs

C

s.zip

WNFS Merge

� Two (or more) root�
� Detect divergenc�

� Look if one node is included
in the other’s DA�

� Start mergin�
� Create merge node (two

previous links�
� Recursive descen�
� Short-circuit if a fast-

forward is possible

A B

Docs

C

s.zip

WNFS Merge

� Works similarily on the private
sid�

� Not perfec�
� Moving & modifying

concurrently result in two
copie�

� Conflicts on files need to be
handled “by coin flip”
(lower hash wins�

� (I’m leaving out some details)

A B

Docs

C

s.zip

WNFS Merge

Immutable internal data
structures make working with
multiple trees at the same time
easier

Consider Local Concurrency
You’re in a browser and a button

causes WNFS changes.

Congratulations, you need to care about

local concurrency!

Local Concurrency

� WNFS operations are asyn�
� That’s a good thing! Not blocking UI threa�
� Non-async is impossible: WebCrypto API is asyn�

� You could solve this using WNFS merg�
� But exploiting local context can give better results!

Local Concurrency

� Transactional AP�
� Each transaction builds its
own WNFS tree (isolation)

const

await async

await
const await
await

 fs =

 fs.transaction(tx => {

 tx.write(,)

 num = parseInt(tx.read())

 tx.write(, (num *).toFixed())

})

// ...

// this will be re-run if conflicts are detected

“public/a/b/file.txt” “Hello, World!”

“private/number.txt”
“private/number.txt” 2 2

Local Concurrency

� read “public/a/b/file.txt�
� read “private/number.txt�
� wrote “private/number.txt”

� Transactional AP�
� Each transaction builds its
own WNFS tree (isolation�

� Software Transactional Memor�
� Keep track of what nodes
were read/writte�

� Re-run transactions if reads
are invalidate�

� Conflict-free transactions
can be stichted together

const

await async

await
const await
await

 fs =

 fs.transaction(tx => {

 tx.write(,)

 num = parseInt(tx.read())

 tx.write(, (num *).toFixed())

})

// ...

// this will be re-run if conflicts are detected

“public/a/b/file.txt” “Hello, World!”

“private/number.txt”
“private/number.txt” 2 2

Local Concurrency

� Transactional AP�
� Each transaction builds its
own WNFS tree (isolation�

� Software Transactional Memor�
� Keep track of

/writte�
� if reads
are invalidate�

� Conflict-free transactions
can be stichted togethe�

� Exploit

what nodes
were read
Re-run transactions

things you can do
locally

const

await async

await
const await
await

 fs =

 fs.transaction(tx => {

 tx.write(,)

 num = parseInt(tx.read())

 tx.write(, (num *).toFixed())

})

// ...

// this will be re-run if conflicts are detected

“public/a/b/file.txt” “Hello, World!”

“private/number.txt”
“private/number.txt” 2 2

� read “public/a/b/file.txt�
� read “private/number.txt�
� wrote “private/number.txt”

BlockStore & PrivateStore

Abstractions

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� Abstracts side effects

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� Abstracts side effect�
� One property�

� You can get what you’ve put

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� Abstracts side effect�
� One property�

� You can get what you’ve pu�
� Doesn’t handle chunking (!�
� Implementations could b�

� Retrieving from memor�
� Retrieving from IndexedD�
� Retrieving from Bitswap

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� Abstracts side effect�
� One property�

� You can get what you’ve pu�
� Doesn’t handle chunking (!�
� Implementations could b�

� Retrieving from memor�
� Retrieving from IndexedD�
� Retrieving from Bitswa�

� (Similar abstractions exist in
in js-ipfs & go-ipfs)

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� Abstracts side effect�
� One property�

� You can get what you’ve pu�
� Doesn’t handle chunking (!�
� Implementations could b�

� Retrieving from memor�
� Retrieving from IndexedD�
� Retrieving from Bitswa�

� (Similar abstractions exist in
in js-ipfs & go-ipfs�

� BlockStores compose!

BlockStore
� BlockStores compose!

type

interface

function
const
return
async
return await

async
const new

return

async
for const of
await

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

 inMemoryBlockStore(base:) {

 map = {}

 {

 getBlock(cid) {

 map[cid] || base.getBlock(cid)

 },

 putBlock(bytes, codec) {

 cid = CID(hash(bytes), codec)

 map[cid] = bytes

 cid

 },

 commitToBase() {

 ([cid, bytes] Object.entries(map)) {

 base.putBlock(bytes, cid.codec)

 }

 }

 }

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

BlockStore

BlockStore
type

interface

function
const
return

async
return await

async
const new

return

async
for const of

await

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

 inMemoryBlockStore(base:) {

 map = {}

 {

 getBlock(cid) {

 map[cid] || base.getBlock(cid)

 },

 putBlock(bytes, codec) {

 cid = CID(hash(bytes), codec)

 map[cid] = bytes

 cid

 },

 commitToBase() {

 ([cid, bytes] Object.entries(map)) {

 base.putBlock(bytes, cid.codec)

 }

 }

 }

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

BlockStore

� BlockStores compose!
� Reads propagat�
� Writes don’t immediatly

propagate

BlockStore

const

const

const await

 ipfsBlockStore =

 tempBlockStore =

 inMemoryBlockStore(ipfsBlockStore)

 newRootCID = wnfs.write(

 currentRootCID,

 tempBlockStore

)

tempBlockStore.commitToBase()

// ...

// Manage your side-effects

// now commit your block store

// or just throw it away

� BlockStores compose!
� Reads propagat�
� Writes don’t immediatly

propagate

BlockStore

type

interface

 = { code: ; name: }

 {

 getBlock(cid:):

< | >

 putBlock(bytes: , codec:):

< >

}

CodecID number string

BlockStore
CID

 Promise Uint8Array null

Uint8Array CodecID
 Promise CID

� BlockStores compose!
� Reads propagat�
� Writes don’t immediatly

propagate
� Applications include�

� Tiered cache�
� Loggin�
� Isolatio�
� Testin�
� WNFS in WASM

PrivateStore

interface

interface

 {

 key:
 name:
}

 {

 getBlock(ref:):

 < | >

 putBlock(ref: , plaintext:):

 < >

}

PrivateRef
SymmetricKey

PrivateName

PrivateStore
PrivateRef

Promise Uint8Array null

PrivateRef Uint8Array
Promise void

� Like a BlockStore, but for
encrypted dat�

� Not indexed by CID, but by
namefilter�

� Can be composed like
BlockStores

PrivateStore

interface

interface

 {

 key:
 name:
}

 {

 getBlock(ref:):

 < | >

 putBlock(ref: , plaintext:):

 < >

}

PrivateRef
SymmetricKey

PrivateName

PrivateStore
PrivateRef

Promise Uint8Array null

PrivateRef Uint8Array
Promise void

� Like a BlockStore, but for
encrypted dat�

� Not indexed by CID, but by
namefilter�

� Can be composed like
BlockStore�

� s can be someting
abstrac�

� Avoid cryptographic
accumulator construction

PrivateName

PrivateStore

interface

interface

 {

 key:
 name:
}

 {

 getBlock(ref:):

 < | >

 putBlock(ref: , plaintext:):

 < >

}

PrivateRef
SymmetricKey

PrivateName

PrivateStore
PrivateRef

Promise Uint8Array null

PrivateRef Uint8Array
Promise void

� Like a BlockStore, but for
encrypted dat�

� Not indexed by CID, but by
namefilter�

� Can be composed like
BlockStore�

� s can be someting
abstrac�

� Avoid cryptographic
accumulator constructio�

� Can locally skip encryption

PrivateName

WNFS in WASM

WNFS in WASM

� WASM is observationally pure

WNFS in WASM

� WASM is observationally pur�
� Idea: Implement algorithms & WNFS DAG surgery in WAS�
� Dependency-inject Network & Storage using the BlockStore

WNFS in WASM

� WASM is observationally pur�
� Idea: Implement algorithms & WNFS DAG surgery in WAS�
� Dependency-inject Network & Storage using the BlockStor�
� Problem: (only applies to Browsers�

� BlockStore methods are
� WASM function imports don’t support async functions nativel�
� Lots of complexity for “conceptually synchronous” operations

asyn�

WNFS in WASM

� WASM is observationally pur�
� Idea: Implement algorithms & WNFS DAG surgery in WAS�
� Dependency-inject Network & Storage using the BlockStor�
� Problem: (only applies to Browsers�

� BlockStore methods are
� WASM function imports don’t support async functions nativel�
� Lots of complexity for “conceptually synchronous” operation�

� Solutio�
� Put WASM into WebWorke�
� Write a small JS shell around WAS�
� Turn asynchronous BlockStore calls from UI Worker into synchronous calls using

SharedArrayBuffers and Atomics.wait

asyn�

https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js

Conclusion

Conclusion

� Separate functional core from mutable shell

Conclusion

� Separate functional core from mutable shel�
� Lots of complicated, pure functions that ingest DAG(s) and produce a DAG�

� DAG surgery: write, mkdir, WNFS merg�
� Namefilters, encryption, skip ratchet

Conclusion

� Separate functional core from mutable shel�
� Lots of complicated, pure functions that ingest DAG(s) and produce a DAG�

� DAG surgery: write, mkdir, WNFS merg�
� Namefilters, encryption, skip ratche�

� Mutable shell handles�
� BlockStore implementations: Networking, Storag�
� Key managemen�
� Root WNFS pointer

Conclusion

� Separate functional core from mutable shel�
� Lots of complicated, pure functions that ingest DAG(s) and produce a DAG�

� DAG surgery: write, mkdir, WNFS merg�
� Namefilters, encryption, skip ratche�

� Mutable shell handles�
� BlockStore implementations: Networking, Storag�
� Key managemen�
� Root WNFS pointe�

� WASM lends itself well for the functional cor�
� I hope you learned something about WNFS today!

Links

� https://whitepaper.fission.codes/file-system/file-system-basic�
� https://github.com/fission-suite/webnative/tree/

matheus23/wnfs�
� https://github.com/qri-io/wnfs-go 

� https://github.com/matheus23/gca-rust/
blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js

WNFS v2 prototype branch:

wnfs-go WNFS v2 implementation:
(will all eventually move to a wnfs-wg github org�
WASM worker experimentation:

https://whitepaper.fission.codes/file-system/file-system-basics
https://github.com/fission-suite/webnative/tree/matheus23/wnfs2
https://github.com/fission-suite/webnative/tree/matheus23/wnfs2
https://github.com/qri-io/wnfs-go
https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js
https://github.com/matheus23/gca-rust/blob/8de902d052e8168b1809f108a63c94f539083ba7/js/worker.js

